169 research outputs found

    Standard Model bundles of the heterotic string

    Full text link
    We show how to construct supersymmetric three-generation models with gauge group and matter content of the Standard Model in the framework of non-simply-connected elliptically fibered Calabi-Yau manifolds Z. The elliptic fibration on a cover Calabi-Yau, where the model has 6 generations of SU(5) and the bundle is given via the spectral cover description, has a second section leading to the needed free involution. The relevant involution on the defining spectral data of the bundle is identified for a general Calabi-Yau of this type and invariant bundles are generally constructible.Comment: 23 pp; minor remarks adde

    The Background Field Method for N = 2 Super Yang-Mills Theories in Harmonic Superspace

    Get PDF
    The background field method for N=2 super Yang-Mills theories in harmonic superspace is developed. The ghost structure of the theory is investigated. It is shown that the ghosts include two fermionic real omega-hypermultiplets (Faddeev-Popov ghosts) and one bosonic real omega-hypermultiplet (Nielsen-Kallosh ghost), all in the adjoint representation of the gauge group. The one-loop effective action is analysed in detail and it is found that its structure is determined only by the ghost corrections in the pure super Yang-Mills theory. As applied to the case of N=4 super Yang-Mills theory, realized in terms of N=2 superfields, the latter result leads to the remarkable conclusion that the one-loop effective action of the theory does not contain quantum corrections depending on the N=2 gauge superfield only. We show that the leading low-energy contribution to the one-loop effective action in the N=2 SU(2) super Yang-Mills theory coincides with Seiberg's perturbative holomorphic effective action.Comment: 17 pages, Late

    Ionization corrections in a multi-phase interstellar medium: Lessons from a z~2 sub-DLA

    Get PDF
    We present a high resolution (FWHM=2.7 km/s), high S/N echelle spectrum for the z = 2.26 QSO J2123-0050 and determine elemental abundances for the z = 2.06 sub-DLA in its line of sight. This high redshift sub-DLA has a complex kinematic structure and harbours detections of neutral (SI, CI), singly (e.g. CII, SII) and multiply ionized (e.g. CIV, SiIV) species as well as molecular H and HD. The plethora of detected transitions in various ionization stages is indicative of a complex multi-phase structure present in this high redshift galaxy. We demonstrate that the ionization corrections in this sub-DLA are significant (up to ~0.7 dex). For example, if no ionization correction is applied, a super-solar metallicity is derived ([S/H] = +0.36), whereas a single phase ionization correction reduces this to [S/H] = -0.19. The theoretical impact of a multi-phase medium is investigated through Cloudy modelling and it is found that the abundances of Si, S and Fe are always over-estimated (by up to 0.15 dex in our experiments) if a single-phase is assumed. Therefore, although Cloudy models improve estimates of metal column densities, the simplification of a single phase medium leaves a systematic error in the result, so that even ionization-corrected abundances may still be too high. Without ionization corrections the properties of this sub-DLA appear to require extreme scenarios of nucleosynthetic origins. After ionization corrections are applied the ISM of this galaxy appears to be similar to some of the sightlines through the Milky Way.Comment: Accepted for publication in MNRA
    corecore